
The Periodic Periodic Table

Elemental organization

Create a 3-d way to visualize trends on the periodic table. By using straws (or other objects) show how the various properties of elements are used to organized elements into elements shape it is.

Materials:

- Copy of a period table.
- Glue stick
- Scissors
- Metric measuring device
- Thick, rigid and easily punctured materials such as: cardboard, Styrofoam or foam core board.
- A pointed object that can puncture a hole in you material above (i.e. a Nail, a wooden skewer, etc...)
- Any long, easy to cut object that can easily fit into the hole diameter created by the pointed object above (i.e. Straws, coffee stirrers, wooden skewers, etc). This will create your

Assembly:

- 1. Print off periodic table provided at end of this document or find one on the web.
- 2. Cut your rigid material to the size of the printed periodic table.
- 3. If using cardboard, it works best if you glue at least two pieces together to make a thicker piece.
- 4. Using a glue stick paste the periodic table onto a piece of cardboard.
- 5. Using a sharp implement (nail, skewer.... etc) puncture a hole through the printed periodic table and the cardboard under layer. Punch a hole within each listed element's border.

To do:

- 1. Cut a length of straw (or other object) to represent the relative scale of one property of an element. Listed below are several properties that can be plotted:
 - radii, ionization energy, electron affinity, electron negativity, density, melting and boiling points, etc...
 - a. Measure and cut each straw based on their published elemental property data.
 - b. Length of straws must be decided upon after looking, analyzing and scaling the data.

Here's an example of plotting atomic radii from Li to Ne:

i. A good way to start is to pick a single row or period of elements. I working with period 2 on the periodic table: Lithium to Neon, their

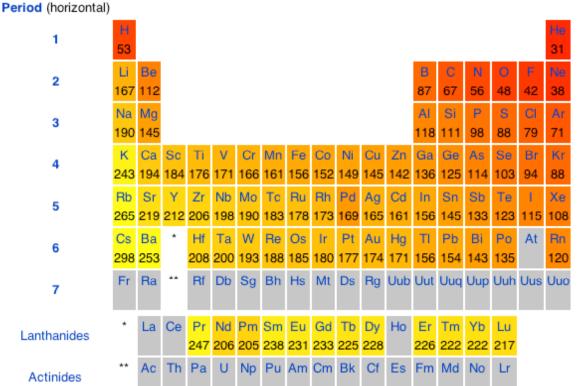
atomic radii are: Li is 167 Pico meters, Be is 112,Ne is 38.

ii. For each straw's length, I scaled it the following way: I took the number in pico maters, divided by 20 and then changed it from pico meters into centimeters.

Symbol	Radii in	Changed	Scaled value
	pm	by	changed to cm
Li	167	Divided by 20	8.3
Be	112	Divided by 20	5.6
В	87	Divided by 20	4.4
С	67	Divided by 20	3.4
N	56	Divided by 20	2.8
О	48	Divided by 20	2.4
F	42	Divided by 20	2.1
Ne	38	Divided by 20	1.9

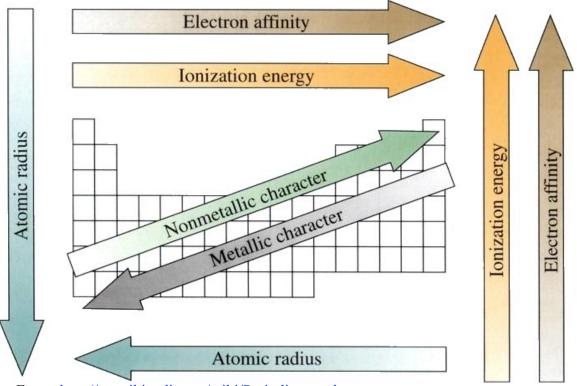
- 2. Insert the cut straws into the appropriate hole that you punched into the periodic table.
- 3. Look at the trend and shape of your staws.

Table below is from:


From http://en.wikipedia.org/wiki/Atomic radius

Calculated atomic radii

The following table shows atomic radii computed from theoretical models, as published by Enrico Clementi and others in 1967. [8] The values are in picometres (pm).


Group (vertical) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

What's going on?

You created rows and columns of bar graphs. This landscape of straws shows how elemental properties change or are similar as you go right, left or up and down the periodic table. These patterns are what make the periodic table so useful.

From: http://en.wikipedia.org/wiki/Periodic trends

Good on-line resources for this activity:

http://en.wikipedia.org/wiki/Periodic trends

http://en.wikipedia.org/wiki/Atomic radius

http://en.wikipedia.org/wiki/Ionization energy

http://en.wikipedia.org/wiki/Electron affinity

http://en.wikipedia.org/wiki/Electronegativity

http://en.wikipedia.org/wiki/Metallic_character - Chemical_properties

http://environmentalchemistry.com/yogi/periodic/atomicradius.html

http://www.webelements.com/periodicity/

The Periodic Table of the Elements

	Francium (223)	87	Cesium 132.90545	55	Rubidium 85.4678	Rb	37	Potassium 39.0983	K	19	Sodium 22.989770	Na	11	Lithium 6.941	Li	သ	Hydrogen 1.00794	Н	-
	Radium (226)	88	Ba Barium 137,327	56	Strontium 87.62	Sr	88	Calcium 40.078	Ca	20	Magnesium 24.3050	Mg	12	Beryllium 9.012182	Be	4			
	Ac Actinium (227)	89	Lanthanum	57	Yttrium 88.90585	Y	39	Scandium 44.955910	Sc	21							•		
	Rf Rutherfordium (261)	104	Hafnium	72	Zirconium 91.224	Zr		Titanium 47.867	Ï	22									
58 Ce Cerium 140.116 90 Th Thorium 232.0381	Db Dubnium (262)	105	Tantalum	73	Niobium 92.90638	Zb	41	Vanadium 50.9415	V	23									
59 Pr Prascodymium 140.90765 91 Pa Protactinium 231.03588	Seaborgium (263)	106	Tungsten	74	Molybdenum 95.94	M_0	42	Chromium 51.9961	\mathbf{Cr}	24									
60 Nd Neodymium 144.24 92 Uranium 238.0289	Bh Bohrium (262)	107	Re Rhenium 186.207	75	Technetium (98)	Tc	43	Manganese 54.938049	Mn	25									
61 Pm Promethium (145) 93 Np Neptunium (237)	Hs Hassium (265)	108	Osmium 190.23	76	Ruthenium 101.07	Ru	44	Iron 55.845	Fe	26									
62 Sm Samarium 150.36 94 Pu Plutonium (244)	Mt Meimerium (266)	109	Iridium	77	Rhodium 102.90550	Rh	45	Cobalt 58.933200	Co	27									
63 Eu Europum 151.964 95 Am Americium (243)	(269)	110	Pt Platinum 195.078	78	Palladium 106.42	Pd	46	Nickel 58.6934	Z	28									
64 Gd Gadolinium 157.25 96 Cm Curium (247)	(272)	111	Au Gold 196.96655	79	Silver 107.8682	\mathbf{Ag}	47	Copper 63.546	Cu	29									
65 Tb Tebum 158.92534 97 Bk Berkelium (247)	(277)	112	Hg Mercury 200.59	80	Cadmium 112.411	Cd	48	Zinc 65.39	Zn	30									
66 Dy Dysprosium 162.50 98 Cf Californium (251)		113	Thallium 204.3833	81	Indium 114.818	In	49	Gallium 69.723	Ga	31	Aluminum 26.981538	Al	13	Boron 10.811	В	5			
67 Ho Holmium 164.93032 99 Es Einsteinium (252)			Pb Lead 207.2	82	Tin 118.710	Sn	50	Germanium 72.61	Ge	32	Silicon 28.0855	Si	14	Carbon 12.0107	С	6			
68 Er Ethium 167.26 100 Fm Fermium (257)		1000000	Bismuth 208.98038	83	Antimony 121.760	Sb	51	Arsenic 74.92160	As	33	Phosphorus 30.973761	P	15	Nitrogen 14.00674	Z	7			
69 Tm Talium 168.93421 101 Md Mendelevium (258)		(20)	Po Polonium (209)	84	Tellurium 127.60	Te	52	Selenium 78.96	Se	34	Sulfur 32.066	S	16	Oxygen 15.9994	0	8			
70 Yb Ytterbium 173.04 102 No Nobelium (259)		(2.0)	At Astatine	85	Iodine 126.90447	_	53	Bromine 79.904	Br	35	Chlorine 35.4527	Ω	17	Fluorine 18.9984032	Ŧ	9			
71 Luetium 174,967 103 Lr Lawrencium (262)		(222)	Rn Radon (222)	86	Xenon 131.29	Xe	54	Krypton 83.80	Kr	36	Argon 39.948	Ar	18	Neon 20.1797	Ne	10	Helium 4.003	He	2